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A B S T R A C T   

Objective: Metabolic biomarkers can potentially inform disease progression in Alzheimer's disease (AD). The 
purpose of this study is to identify and describe a new set of diagnostic biomarkers for developing deep learning 
(DL) tools to predict AD using Ultra Performance Liquid Chromatography Mass Spectrometry (UPLC-MS/MS)- 
based metabolomics data. 
Methods: A total of 177 individuals, including 78 with AD and 99 with cognitive normal (CN), were selected from 
the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort along with 150 metabolomic biomarkers. We 
performed feature selection using the Least Absolute Shrinkage and Selection Operator (LASSO). The H2O DL 
function was used to build multilayer feedforward neural networks to predict AD. 
Results: The LASSO selected 21 metabolic biomarkers. To develop DL models, the 21 biomarkers identified by 
LASSO were imported into the H2O package. The data was split into 70% for training and 30% for validation. 
The best DL model with two layers and 18 neurons achieved an accuracy of 0.881, F1-score of 0.892, and AUC of 
0.873. Several metabolomic biomarkers involved in glucose and lipid metabolism, in particular bile acid me-
tabolites, were associated with APOE-ε4 allele and clinical biomarkers (Aβ42, tTau, pTau), cognitive assessments 
[the Alzheimer's Disease Assessment Scale-cognitive subscale 13 (ADAS13), the Mini-Mental State Examination 
(MMSE)], and hippocampus volume. 
Conclusions: This study identified a new set of diagnostic metabolomic biomarkers for developing DL tools to 
predict AD. These biomarkers may help with early diagnosis, prognostic risk stratification, and/or early treat-
ment interventions for patients at risk for AD.   

1. Introduction 

Alzheimer's disease (AD), a progressive, degenerative disorder of the 
brain, is the most common form of dementia and is characterized by 
progressive loss of memory and cognitive functions due to continuous 
neuron damage and the resultant increase in affected areas of the brain 
[1]. The pathological brain changes of AD include the accumulation of 

abnormal β-amyloid A(β) plaques (Aβ peptides) and neurofibrillary 
tangles (tau proteins), as nerve cells degenerate [1–4]. AD and its related 
dementias currently affect 6.5 million Americans aged 65 and older, and 
its prevalence is expected to increase to 13.8 million by 2060 which 
warrants the development of medical breakthroughs to prevent, slow, or 
cure AD [5]. AD may start years or even decades before clinical symptom 
onset, therefore it is crucial to identify predictive biomarkers in the 
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preclinical stage so that medical science can develop strategies to pre-
vent the progression of AD [4,6,7]. In addition, early detection of AD is 
critically important for drug development and application as well as for 
the development of diagnostic and therapeutic approaches aiming to 
prevent loss of function and diminished longevity [8–10]. The metabolic 
basis of AD is still poorly understood and the relationships between 
systemic abnormalities in metabolism and AD pathogenesis are unclear 
but there is potential to identify metabolic biomarkers that are predic-
tive of AD diagnosis and progression. 

Machine learning (ML) methods can address high dimensional data, 
integrate data from different sources, model the etiological and clinical 
heterogeneity, and discover new biomarkers [8,10,11]. Due to the 
complex nature of AD, ML methods have the potential to develop new 
insights into the disease pathophysiology [12,13]. During the last 
decade, several ML technologies have been used to enhance the diag-
nosis and prognosis of AD such as Random Forest (RF), Linear 
Discriminant Analysis (LDA), Decision Trees (DT), and Support Vector 
Machines (SVM) [8,12–15]. SVM is a commonly used technique to 
differentiate between AD patients and healthy individuals, and between 
steady and progressing subtypes of mild cognitive impairment (MCI) 
[8,13]. 

Artificial neural networks (ANN) are inspired by the layered struc-
ture of the brain's neurons, and their computations could be imple-
mented in biological neurons [16]. ANNs have demonstrated their 
powerful potential in medical research applications [17] and exceeded 
the results of other ML algorithms such as RF and SVM since they are 
capable of modeling complex non-linear relationships via layers of in-
termediate features [8,18]. ANNs, as a class of ML algorithms, are 
capable of combining raw inputs into layers of intermediate features, 
while deep learning (DL) using ANNs has reached unprecedented pre-
diction performance for complex tasks [8,13,15]. Therefore, DL has 
emerged as a versatile approach for predicting complex biological 
phenomena and displays tremendous potential in biology and medicine 
[15,19–21]. DL techniques, such as deep neural networks (DNN) [15], 
stacked autoencoder (SAE) neural networks [15,22], and convolutional 
neural networks (CNNs) [15,23,24] have been reported to be more ac-
curate for AD diagnosis in comparison to conventional ML models 
[12,15]. However, the study of DL-based AD study is still in its early 
stages, and further studies are needed that incorporate different infor-
mation sources [8]. 

Metabolomics involves the comprehensive analysis of small- 
molecule metabolites in a given biological matrix and their response 
to disease, drugs, diet, and lifestyle. It has been shown that by revealing 
insights into the underlying biochemistry, metabolomics has the po-
tential to successfully differentiate neurodegenerative diseases from 
healthy controls [25–28]. Metabolomic-based techniques have been 
used for both early diagnosis of AD and monitoring of appropriate 
treatment [29]. Traditional ML methods, such as logistic regression, RF, 
LDA, and SVM, have been used in metabolomics for AD [14,28,30–37]. 
Recently, DL application in metabolomics in AD has increased 
[15,22,23,30,34,38,39]. Metabolic biomarkers of AD can potentially 
inform the disease progression of AD, its mechanisms, and its 
endophenotypes. 

However, metabolic biomarkers are abundant and parts of these 
metabolic biomarkers are correlated with one another. These correla-
tions can be a result of shared metabolic pathways or regulatory 
mechanisms, as well as interconnected physiological responses within 
the body. It is essential to identify the informative and relevant features 
from a larger collection of features and lead to an improved character-
ization of the underlying patterns and relations [40,41]. Therefore, the 
aims of this study are (1) to perform feature selection of metabolomic 
biomarkers and evaluate the performance in SVM, and (2) to train DL 
models to predict AD using the H2O package [42]. 

2. Materials and methods 

2.1. Data set 

Data used in the preparation of this proposal were obtained from the 
Alzheimer's Disease Neuroimaging Initiative (ADNI) (adni.loni.usc.edu). 
The ADNI was launched in 2003 as a public-private partnership, led by 
Principal Investigator Michael W. Weiner, MD. The primary goal of 
ADNI has been to test whether serial MRI, positron emission tomography 
(PET), CSF biological markers, and clinical and neuropsychological as-
sessments can be combined to measure the progression of MCI and early 
AD. The ADNI study began in 2004 as a multicenter that provides ser-
vices in the United States and Canada. The ADNI is an ongoing, longi-
tudinal, multicenter study designed to develop clinical, imaging, 
genetic, and biochemical biomarkers for the early detection and tracking 
of AD. In our study, the merged data was used from several components 
of ADNI. A letter of exemption was obtained from the Institutional Re-
view Board (IRB) since this study is a secondary analysis of existing data. 

2.2. Measures 

The study included sociodemographic factors, surveys of cognition, 
plasma metabolomic biomarkers, cerebral spinal fluid (CSF) clinical 
biomarkers, and MRI imaging data. Social-demographic factors included 
gender, age, and educational level. Gender was self-reported as either 
male or female. Age and years of education were reported as continuous 
variables. APOE-ε4 carriers were defined as individuals with at least one 
ε4 allele (APOE-ε4/ε4, ε4/ε3 or ε4/ε2 as APOE-ε4–1+), while non- 
carriers were defined as individuals with no ε4 allele (APOE-ε4–0). 
The Mini-Mental State Examination (MMSE) provides a global measure 
of mental status, evaluating five cognitive domains: orientation, regis-
tration, attention and calculation, recall, and language [43]. The Alz-
heimer's Disease Assessment Scale-cognitive subscale 13 (ADAS13) was 
also used and is a 13-items cognitive test where higher scores reflect 
poorer cognitive performance [44]. The MRI brain structure data was 
derived from UCSF FreeSurfer datasets. Hippocampus volume (HPV) 
was generated from UCSF MRI structure data. Clinical CSF biomarkers 
(Aβ42, tTau, and pTau) were included. 

This study selected three metabolomic datasets from ADNI. The first 
dataset was selected from ADMC U Hawaii ultra-performance liquid 
chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) 
Gut Metabolites Serum Longitudinal. There are 104 metabolites in the 
human serum samples. The second dataset is from AD Metabolomics 
Consortium Duke Biocrates P180 Kit UPLC, which includes 51 metab-
olites. Biospecimens of human serum (ADNI samples) were provided by 
Duke University (the sponsor), and the quantitative measurement of 
these samples was carried out using both UPLC-MS/MS. The third 
dataset is from the Targeted UHPLC-MS/MS analysis of High-Value 
Metabolites in Serum Samples with 22 metabolites available. 

AD diagnosis, demographic variables, APOE-ε4 genotypes, and 
clinical CSF biomarkers (Aβ42, tTau, and pTau) were downloaded from 
the ADNIMERGE data. We merged demographic variables, AD diag-
nosis, APOE-ε4 genotypes, MMSE, ADAS13, clinical CSF biomarkers, 
HPV, and metabolic biomarkers. Then we excluded the individuals 
without metabolic biomarkers and individuals with metabolic bio-
markers but missing >20% for other variables. The remaining total 
sample size is 335 with 150 metabolic biomarkers including 78 in-
dividuals with AD, 99 with cognitive normal (CN), and 158 with MCI. In 
the current study, we used AD and CN individuals (Table 1). 

2.3. Feature selection of metabolomic data and evaluation using SVM 

Before applying the feature selection methods, the Z score was 
computed for 150 metabolite biomarkers using the mean and standard 
deviation. We performed feature selection using Least Absolute 
Shrinkage and Selection Operator (LASSO). The LASSO in the R package 
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“glmnet” is used to perform logistic regression when the response is 
binary. The LASSO method regularizes model parameter λ by shrinking 
the regression coefficients, reducing some of them to zero. The feature 
selection phase occurs after the shrinkage, where every non-zero value is 
selected to be used in the model [45]. The SVM algorithm (linear kernel, 
radial basis function (RBF) kernel, and polynomial kernel) was applied 
to develop a model to predict AD [46]. Linear kernel is used when the 
data is linearly separable, that is, it can be separated using a single line. 
Linear kernel combines all support vectors linearly to produce the 
output. The Radial Basis Function (RBF) kernel is usually the first 
reasonable choice as it can nonlinearly map data into higher dimen-
sional space. The RBF kernel measures the similarity between two data 
points as a function of the Euclidean distance between them. The 
polynomial kernel represents the similarity of vectors in a feature space 
over polynomials of the original variables, allowing learning of non- 
linear models, using a polynomial function to transform the input data 
into a higher dimensional space. The data was split into 70% for training 
and 30% for validation. To evaluate the performance of feature selection 
methods, accuracy, recall, specificity, precision, F1-score, and AUC 

(area under the ROC curve) were used to evaluate the performance of 
feature selection methods. The F1-score is a harmonic mean that com-
bines both recall and precision. 

2.4. Deep learning 

Features selected by LASSO were imported into the H2O package 
(version 3.38.0.1) to develop the DL model [42]. H2O's DL is based on a 
multi-layer feedforward ANN, also known as DNN or multi-layer per-
ceptron (MLP); this is the most common type of DNN. Fig. 1 illustrates an 
ANN with two hidden layers, four input variables/neurons, and output. 
There is no fixed rule for the number of hidden layers and the number of 
input neurons in the development of DL models. The network can 
contain a large number of hidden layers consisting of neurons with the 
tanh, rectifier, or maxout activation functions. The data was split into 
70% for training and 30% for validation. First, we performed a grid 
search to evaluate the accuracy of different models. For hyperparameter 
tuning, we compared four different activation functions (“Rectifier”, 
“RectifierWithDropout”, “Maxout”, and “MaxoutWithDropout”), hidden 
layers from 1 to 3 with different neurons, 10-fold cross-validation, 
epochs = 100. L1 and L2 penalties were set as l1_opt <− c(0, 
0.00001, 0.0001, 0.001, 0.01, 0.1) and l2_opt <− c(0, 0.00001, 0.0001, 
0.001, 0.01, 0.1). Search_criteria included strategy = “Random-
Discrete”, max_models = 100, max_runtime_secs = 900, stopping_tol-
erance = 0.001, and stopping_rounds = 15. The models which return 
higher accuracy were chosen. Then, we focused on several DL models 
with higher accuracy and compared models with 1–3 hidden layers and 
different numbers of neurons. To build the DL model, we set activation 
as “Rectifier”, epochs = 100, seed = 1337, reproducible = T, hidden, 
nfolds = 10, input_dropout_ratio = 0.2, l1 = 1e-6, variable_importances 
= T. To evaluate different models, the H2O package provides several 
measures such as accuracy, recall, specificity, precision, F1-score, AUC, 
Area Under Precision-Recall Curve (AUPRC), and Matthew's correlation 
coefficient (MCC). 

2.5. Statistical analysis 

Table 1 presents an overview of the dataset. The categorical variables 
were presented in their raw values along with the proportions. Contin-
uous variables such as age and education are presented with their mean 
and standard deviation (SD). The chi-square test was used to examine 
the associations of categorical variables with AD and CN. An indepen-
dent samples t-test was performed to determine differences in 

Table 1 
Descriptive statistics.  

Variable CN (Mean ± SD or 
n) 

AD (Mean ± SD or 
n) 

t/χ2, p-value 

Age 75.5 ± 5.4 74.9 ± 7.9 0.55, 0.559 
Gender (n)   0.07, 0.786 

Male 50 41  
Female 49 37  

Education 15.7 ± 2.9 15.0 ± 3.0 1.50, 0.137 
APOE-ε4 allele 

(n)   33.91, <0.0001 
0 75 25  
+ 24 53  

ADAS13 9.6 ± 4.2 28.4 ± 7.7 
− 20.51, 
<0.0001 

MMSE 29.1 ± 1.1 23.6 ± 1.8 25.2, <0.0001 
Hippocampus 7194.5 ± 799.3 5961.1 ± 1064.1 8.81, <0.0001 
Aβ42 1156.0 ± 447.2 639.4 ± 302.0 8.75, <0.0001 
tTau 236.4 ± 82.3 353.4 ± 136.7 − 7.04, <0.0001 
pTau 21.9 ± 8.5 35.5 ± 15.7 − 7.38, <0.0001 

Abbreviations: AD: Alzheimer's disease; CN: Cognitive normal; SD: Standard 
deviation. 
MMSE: Mini-Mental State Examination. ADAS13: Alzheimer's Disease Assess-
ment Scale-cognitive subscale 13. P-value is based on the Chi-square test or 
independent samples t-test. 

Fig. 1. Visualization of the artificial neural network model with four inputs, two hidden layers, and output.  

K. Wang et al.                                                                                                                                                                                                                                   



Journal of the Neurological Sciences 453 (2023) 120812

4

continuous variables between AD and CN samples and between APOE-ε4 
genotypes. 

To further analyze the relationships among the selected metabolomic 
biomarkers, three clinical CSF biomarkers (Aβ42, tTau, and pTau), 
cognitive phenotypes (MMSE and ADAS13), and HPV from MRI, 
Spearman's rank correlation analyses were performed. All statistical 
analyses were performed using SAS 9.4. 

2.6. Power analysis 

Independent samples t-test was used to compare the means of 
continuous variables between the two groups. Using G.Power [47,48], 
assuming α = 0.05, Cohen's d = 0.50 (moderate effect), sample size for 
AD and CN being 78 and 99, respectively, the power can reach 90.7%. 

3. Results 

3.1. Descriptive statistics 

The demographic characteristics of the participants are summarized 
in Table 1. Age, gender, and education did not differ between the CN and 
AD groups (p > 0.05). A significant difference was observed in the higher 
frequency of the APOE-ε4 allele presence in the AD group (p < 0.0001). 
The AD group had higher mean values in the ADAS13 but lower mean 
scores for the MMSE. The AD group had significantly smaller hippo-
campus volume and less Aβ42, with higher scores for both tTau and 
pTau proteins (all p-values <0.0001). 

3.2. Feature selection 

The LASSO software selected 21 biomarkers listed in Table 2 based 
on the optimal parameter ln(λ) = − 3.32 (Fig. 2). In addition, among 21 
biomarkers selected by LASSO, 8 were significantly associated with AD 
using the independent t-test and 4 cholic acid (CA) species 
(X3_Hydroxyisovaleric acid, glycohyodeoxycholic acid (GHDCA), hyo-
deoxycholic acid (HDCA), and isolithocholic acid (ISOLCA)) was asso-
ciated with APOE-ε4 (Table 2 and Table S1). Table S1 lists 150 
biomarkers with coefficients using LASSO and p-values based on inde-
pendent t-tests comparing means in biomarkers between AD and CN as 
well as between APOE-ε4 genotypes. 

3.3. SVM and performance 

We evaluated the performance of 21 features selected by LASSO and 
the whole 150 metabolomic biomarkers using SVM, with the perfor-
mance statistics (accuracy, recall, specificity, precision, F1-score, and 
AUC) (Table 3). We used three kernel methods in SVM (linear kernel, 
RBF kernel, and polynomial kernel models) to develop models for pre-
dicting AD. Based on the accuracy, the best model with the highest ac-
curacy was an SVM with a polynomial kernel, trained on 21 biomarkers 

selected by LASSO. It achieved an accuracy of 0.755, recall of 0.926, F1- 
score of 0.793, and AUC of 0.785. Based on the F1-score, the linear 
kernel SVM model with 21 features based on LASSO is the best with an 
accuracy of 0.717, recall of 0.926, F1-score of 0.896, and AUC of 0.849. 

3.4. Deep learning using the H2O package 

Using the 21 metabolomic biomarkers identified by LASSO, we im-
ported them into the H2O package to develop DL models. We performed 
a grid search with hyperparameter tuning and found that two or three 
hidden layers achieved higher accuracy. Then, we focused on several DL 
models with higher accuracy and compared models with 1–3 hidden 
layers and the number of input neurons from 9 to 21. The performance of 
different models is listed (Table 4). Based on the accuracy and F1-score, 
the best model contains two layers and 18 neurons, it achieved the 
highest accuracy of 0.881, F1-score of 0.892, AUC of 0.873, AUCPR of 
0.865, and MCC of 0.784. The variable importance of the best model 
with two layers and 18 neurons showed the top 8 importance metabo-
lites are hippuric acid, isocitric acid, adipic acid, taurocholic acid (TCA), 
glucose, GHDCA, valine, and creatinine (Fig. 3), molecules involved in 
glucose, amino acids, and lipid metabolism. The second-best model with 
two layers and 20 neurons achieved an accuracy of 0.854, F1-score of 
0.847, AUC of 0.851, AUCPR of 0.860, and MCC of 0.771 (Table 4). The 
AUC curves for models with two layers and 9, 10, 14, 16, 18, and 20 
neurons showed that the model with 18 input biomarkers has the 
highest AUC value, and the model with 20 input biomarkers ranked 
second (Fig. 4). 

3.5. Correlation analysis between metabolomic biomarkers and clinical 
characteristics 

We performed the Spearman correlation analysis between the 
selected 21 metabolomic biomarkers using LASSO and clinical charac-
teristics. The results are shown in Table S2. Isocitric acid, TCA, Seroto-
nin, and Taurine were significantly correlated with Aβ42. 
L_alpha_Aminobutyric acid and GHDCA were correlated with tTau and 
pTau. Hippuric acid, Adipic acid, L_alpha_Aminobutyric acid, Docosa-
hexaenoic acid, GHDCA, HDCA, ISOLCA, Creatinine, Serotonin, 
Taurine, and Glucose were correlated with ADAS13 and/or MMSE. 

Table 2 
Features selection using Least Absolute Shrinkage and Selection Operator 
(LASSO).  

Package Feature selection 
algorithm 

Extracted variables 

glmnet 
in R 

Least Absolute Shrinkage 
and Selection Operator 
(LASSO) 

21 variables: Hippuric acid, L_Malic acid, 
Adipic acid, L_alpha_Aminobutyric acid, 
Isocitric acid, X3_Hydroxyisovaleric acid, 
Docosahexaenoicacid, CA, GHDCA, HDCA, 
ISOLCA, TCA, UDCA, Asn, Orn, Val, 
Creatinine, Serotonin, Taurine, Glucose, 
Lactate 

Abbreviations: CA: cholic acid; GHDCA: glycohyodeoxycholic acid; HDCA: 
hyodeoxycholic acid; ISOLCA: isolithocholic acid; TCA: taurocholic acid; UDCA: 
ursodeoxycholic acid; Asn: asparagine; Orn: ornithine; Val: valine. 

Fig. 2. The LASSO software selected 21 biomarkers based on the optimal 
parameter ln(λ) = − 3.32. 
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L_Malic acid, GHDCA, Valine, Serotonin, and Glucose were correlated 
with hippocampus volume. GHDCA, a bile acid derivative, was found to 
be correlated with tTau and pTau, cognitive test, and hippocampus 
volume. 

4. Discussion 

This study reports the development of a DL model for the prediction 
of AD using non-invasive UPLC-MS/MS-based metabolomics data. A 
total of 21 of 150 metabolomic biomarkers were selected by the LASSO 
algorithm, which showed the best model with the highest accuracy in an 
SVM with a polynomial kernel. Furthermore, the DL model (with two 
layers and 18 neurons) trained using the H2O package and the 21 
metabolomic biomarkers identified by LASSO achieved a higher 

accuracy, F1-score, and AUC than the SVM model. Multiple metab-
olomic biomarkers were associated with APOE-ε4 genotypes and exist-
ing clinical characterics of AD (Aβ42, tTau, pTau, ADAS13, MMSE, and 
hippocampus volume). This is clinically relevant since these metab-
olomic biomarkers can be obtained in minimally invasive ways and have 
the potential to be used in a diagnostic profile for AD prior to the 
recognition of cognitive impairment. The findings regarding hippo-
campus volume are interesting and require further exploration. Current 
studies have identified that aging and memory loss, particularly verbal 
memory function loss, are related to right greater than left hippocampal 
shrinkage [49] but in people with AD, reports of hippocampus volume 
have been reported as general loss of tissue [50]. 

A wide variety of ML and DL methods have been applied to classify 
and subtype patients, predict progression, identify biomarkers, and 

Table 3 
Performance comparison of metabolomic biomarkers using support vector machines (SVM).  

Features Model Accuracy Recall Specificity Precision F1-score ROC 

All 150 features Linear kernel 0.642 0.733 0.522 0.667 0.698 0.622 
RBF kernel 0.642 0.833 0.391 0.641 0.724 0.557 
Polynomial kernel 0.679 0.800 0.522 0.686 0.739 0.603 

21 features based on LASSO Linear kernel 0.717 0.926 0.500 0.867 0.896 0.849 
RBF kernel 0.717 0.815 0.615 0.688 0.746 0.837 
Polynomial kernel 0.755 0.926 0.577 0.694 0.793 0.785 

Abbreviations: SVM: support vector machines; LASSO: Least Absolute Shrinkage and Selection Operator; RBF: Radial basis function; F1-score: a harmonic mean that 
combines both recall and precision; AUC: Area under the ROC (receiver operating characteristics) curve. 

Table 4 
Performance comparison of metabolomic biomarkers using deep learning.  

Number of neurons in the hidden layer Hidden Layer Accuracy Recall Specificity Precision F1-score AUC AUPRC MCC 

9 c(9) 0.800 0.843 0.766 0.774 0.785 0.743 0.707 0.611  
c(9,9) 0.851 0.808 0.807 0.862 0.810 0.789 0.777 0.725  
c(9,9,9) 0.734 0.901 0.564 0.667 0.748 0.695 0.681 0.539 

10 c(10) 0.752 0.950 0.528 0.700 0.780 0.728 0.697 0.591  
c(10,10) 0.854 0.925 0.745 0.810 0.852 0.842 0.795 0.703  
c(10,10,10) 0.762 0.930 0.563 0.688 0.782 0.746 0.770 0.583 

11 c(11) 0.773 0.858 0.628 0.723 0.775 0.720 0.732 0.616  
c(11,11) 0.767 0.858 0.636 0.697 0.761 0.727 0.735 0.568  
c(11,11,11) 0.816 0.904 0.695 0.774 0.820 0.776 0.771 0.641 

12 c(12) 0.796 0.898 0.662 0.758 0.797 0.802 0.780 0.648  
c(12,12) 0.811 0.848 0.733 0.798 0.808 0.757 0.758 0.666  
c(12,12,13) 0.824 0.921 0.679 0.791 0.817 0.786 0.773 0.663 

13 c(13) 0.841 0.942 0.726 0.772 0.841 0.819 0.772 0.693  
c(13,13) 0.848 0.866 0.797 0.795 0.827 0.829 0.773 0.678  
c(13,13,13) 0.791 0.942 0.622 0.737 0.819 0.798 0.812 0.651 

14 c(14) 0.798 0.889 0.702 0.802 0.812 0.787 0.761 0.645  
c(14,14) 0.846 0.896 0.788 0.813 0.843 0.842 0.842 0.692  
c(14,14,14) 0.835 0.866 0.748 0.845 0.836 0.790 0.797 0.668 

15 c(15) 0.783 0.882 0.667 0.737 0.791 0.753 0.743 0.613  
c(15,15) 0.828 0.902 0.742 0.805 0.830 0.783 0.765 0.684  
c(15,15,15) 0.772 0.844 0.673 0.744 0.770 0.751 0.742 0.593 

16 c(16) 0.800 0.913 0.656 0.744 0.811 0.790 0.814 0.644  
c(16,16) 0.855 0.932 0.749 0.809 0.856 0.826 0.817 0.715  
c(16,16,16) 0.822 0.940 0.676 0.758 0.830 0.790 0.762 0.698 

17 c(17) 0.798 0.896 0.653 0.764 0.810 0.769 0.783 0.645  
c(17,17) 0.728 0.904 0.515 0.671 0.764 0.721 0.743 0.537  
c(17,17,17) 0.847 0.830 0.804 0.843 0.828 0.922 0.836 0.674 

18 c(18) 0.809 0.883 0.714 0.781 0.812 0.769 0.761 0.617  
c(18,18) 0.881 0.973 0.793 0.841 0.892 0.873 0.865 0.784  
c(18,18,18) 0.767 0.926 0.628 0.744 0.796 0.728 0.727 0.650 

19 c(19) 0.781 0.948 0.610 0.722 0.811 0.791 0.793 0.595  
c(19,19) 0.797 0.875 0.664 0.802 0.811 0.752 0.787 0.656  
c(19,19,19) 0.837 0.942 0.708 0.805 0.852 0.806 0.823 0.747 

20 c(20) 0.802 0.883 0.681 0.779 0.808 0.775 0.771 0.649  
c(20,20) 0.854 0.879 0.790 0.858 0.847 0.851 0.860 0.771  
c(20,20,20) 0.819 0.876 0.713 0.788 0.818 0.719 0.778 0.676 

21 c(21) 0.846 0.925 0.719 0.827 0.856 0.852 0.864 0.702  
c(21,21) 0.774 0.920 0.626 0.720 0.787 0.758 0.761 0.579  
c(21,21,21) 0.824 0.908 0.691 0.773 0.823 0.824 0.833 0.647 

Abbreviations: F1-score: a harmonic mean that combines both recall and precision; AUC: Area under the ROC (receiver operating characteristics) curve; AUPRC: Area 
Under the Precision-Recall Curve; MCC: Matthews correlation coefficient. 
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explore drug repurposing [10–12,51]. One benefit of the DL approach 
over typical ML methods is that the reliability of DL techniques grows 
with the phases of learning. DL methods tend to outperform conven-
tional ML techniques when more information is available [52]. DL, with 
its simple architecture, has the potential for appropriate applications in 
clinical practice. 

Though it has been suggested over the last 10 years that metab-
olomics has the potential to play a key role in the early diagnosis of AD 
[53], there is a paucity of publications on metabolomics and DL in 
general and a metabolomic profile has not been developed for the early 
detection of AD. This is partly due to the fact that part of metabolomic 
variables are highly correlated, owing to their extensive cross-linking in 
biochemical processes. Consequently, feature selection is burdensome, 
and predictive modeling is challenging [54]. Considering the high- 
dimensional context, as well as the high degree of metabolite- 
metabolite interaction, found in untargeted metabolomics data [55], 
logistic regression, together with feature selection algorithms such as 
LASSO, RF, and SVM, are now being increasingly applied to the analysis 
of metabolomics data [56,57]. For example, one study used the LASSO 
algorithm followed by SVM and RF, to select eight metabolic features to 
differentiate stable MCI subjects from MCI subjects who later develop 
AD, with an overall average accuracy of 73.5% [14]. Another study used 
correlation-based feature selection and LASSO methods to develop 
biomarker panels from urine metabolomics samples and then train an 
SVM to distinguish healthy controls from patients with AD [28]. In the 
present study, we found that LASSO feature selection resulted in the best 
overall prediction performance when used for SVM training. LASSO can 
remove highly correlated features. If a group of predictors are highly 
correlated, LASSO picks only one of the predictors and shrinks the others 
to zero [45]. Therefore, the 21 biomarkers selected by LASSO do not 
show a strong correlation among them. Table S2 reveals the Spearman 
correlations among these 21 biomarkers and clinical variables. 

Previous studies have shown that DL techniques were more accurate 
than traditional ML algorithms such as RF and SVM [12,15,18]. More 
specifically, metabolomic data is very high-dimensional and hard for 
non-DL methods to handle. Consequently, DL could aid in revealing 
hidden relationships and help the clinician in the decision-making 
process of patient selection in an individualized way [58]. DL has 
been used in metabolomics in AD [15,22,30,34,38,39]. In addition, the 
H2O package in R is an open-source ML platform that supports the most 
widely used ML models and advanced models, such as multilayer feed-
forward ANNs with multiple hidden layers [40,41]. Several studies have 

used the H2O package for building DL models. For example, one study 
built an H2O DL model to predict 12-month esophageal variceal 
bleeding based on endoscopic images and clinical variables [59]. 
Another study exploited the ability of DL algorithms using the H2O 
package to combine multi-omics data in prostate cancer [60]. Interest-
ingly, one study found the DL framework in H2O has the highest AUC in 
classifying estrogen receptor status (positive or negative) in breast 
cancer patients, compared to the other ML algorithms using metab-
olomics data [61]. Until now, no single study has used H2O DL for AD. In 
this present study, we compared DL models with different hidden layers 
and various numbers of input neurons for predicting AD using the H2O 
DL function. The best model had two layers and 18 input neurons/ 
metabolomic biomarkers and the second-best model with two layers and 
20 input neurons/biomarkers. 

Although the metabolic basis of AD is poorly understood, metabolic 
biomarkers have been shown to be sensitive to AD and have an enor-
mous impact on developing methods, which will improve life quality 
and slow the progression of the disease [25–30]. The ADNI collected 
metabolomics datasets to investigate the relationship between metabo-
lites and disease susceptibility and progression [62,63]. Previous studies 
have shown that AD etiology may start over 10 years before clinical 
symptom onset [4,6,7], while metabolomics has the potential to suc-
cessfully differentiate neurodegenerative diseases from healthy controls 
[25–28]. Furthermore, metabolomic-based techniques have been used 
for both early diagnosis of AD and monitoring of appropriate treatment 
[29]. The findings of our present study have revealed a significant 
metabolic biomarker that holds immense potential in effectively clas-
sifying individuals with AD and CN individuals. Moreover, newly 
identified biomarkers show promising capabilities in predicting the 
onset of AD during its early stages. 

The findings from this current study are relevant to findings from 
several papers that provided intensive comments on the application of 
DL in metabolomics in AD [10,15,30,38,39]. One study reported that 
combining brain structure data with metabolite levels of the frontal and 
parietal brain regions (a total of 14 metabolic data) can improve the 
model classification efficiency of AD using SAE neural network [22]. 
Another study compared metabolites in blood to CSF biomarkers for 
specificity for AD and reported that the plasma metabolites matched the 
AUC for CSF biomarkers of amyloid, pTau, andtTau [34]. The present 
study selected 21 metabolic biomarkers using LASSO and identified the 
neural network model with 2 hidden layers and 18 input neurons as the 
best model. The top six biomarkers are Hippuric acid Isocitric acid, 

Fig. 3. Variable importance of deep learning model with two hidden layers and 18 input biomarkers in hidden layers.  
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. AUC curves in the validation data using H2O. (a) model with two layers and nine input biomarkers; (b) model with two layers and ten input biomarkers; (c) 
model with two layers and 14 input biomarkers; (d) model with two layers and 16 input biomarkers; (e) model with two layers and 18 input biomarkers; (f) model 
with two layers and 20 input biomarkers. 
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Adipic acid, TCA, Glucose, and GHDCA (Fig. 2). Hippuric acid was 
correlated with ADAS13. Isocitric acid and TCA were correlated with 
Aβ42. Adipic acid was correlated with MMSE. Glucose was correlated 
with MMSE and Hippocampus. GHDCA was correlated with most of the 
clinical biomarkers, tTau, pTau, ADAS13, MMSE, and Hippocampus in 
the present study. Among glucose, amino acid, and lipid metabolism, 
lipid homeostasis has been mostly perturbed in multifactorial patho-
physiology in AD [10,31,33,64,65]. Indeed, a lipid regulator drug has 
shown improvement in AD pathology using a mouse model of AD [51]. 
Our present study shows that GHDCA, implicated in the neutral syn-
thesis pathway of bile acid metabolism, is consistently correlated with 
changes in biomarkers, brain structure hippocampus, and cognitive 
performance. Our finding that the alteration of both glucose metabolism 
and bile acid metabolism is implicated in AD is not surprising, as these 
two metabolisms and their disorders are closely linked [66]. Glucose is 
the major energy source in the brain. Cholesterol metabolism is associ-
ated with the development of AD, with many studies focused on APOE 
because APOE transports cholesterol. Interestingly, bile acid is synthe-
sized from cholesterol. With the proficiency in analytical chemistry to 
profile the metabolites, a multiomics approach such as lipidomics along 
with proteomics combined with intelligent DL method will show us 
multiple biomarkers combinations as signatures, defining different 
stages of progression of AD in support of precision medicine. 

This study makes several contributions. First, we performed feature 
selection using LASSO and identified 21 biomarkers for SVM and DL to 
predict AD. Second, simulations confirmed that 18 hidden neurons with 
2 hidden layers resulted in the best DNN model. Additionally, we per-
formed cluster analysis to examine the complex relationships among 
these metabolomic biomarkers and found that they were correlated with 
meaningful clinical variables such as clinical CSF biomarkers (Aβ42, 
tTau, and pTau), ADAS13, MMSE, and hippocampus volume. 

Several limitations need to be acknowledged. First, the sample size 
(n = 177) is relatively small. We merged several components from ADNI, 
whereas fewer individuals had CSF biomarkers or metabolomic 
biomarker values. However, the power is still high (90.7%). Second, the 
current study is cross-sectional, using the baseline data. Future studies 
will investigate the variation in metabolic biomarkers on the longitu-
dinal progression of AD. Third, the present study focused on the feature 
selection of metabolomic biomarkers, we did not compare the DL al-
gorithm and SVM methods with other ML tools. In addition, this study 
focused on non-invasive metabolic data. The conversion of non-image 
data to image-like data could boost prediction metrics [67]. Finally, 
future studies can incorporate heterogeneity into the analysis and 
develop methods for addressing issues in multi-source data integration 
so that findings can be translatable to apply to future clinical practice 
[12]. 

5. Conclusions 

In the present study, we performed feature selection using LASSO 
and found the 21 metabolomic biomarkers selected by the LASSO al-
gorithm showing the highest accuracy in the SVM to predict AD. Using 
DL modeling of the 21 metabolomic biomarkers selected by the LASSO, 
we constructed DNN models to predict AD and found that the best DL 
model with two layers and 18 neurons achieved the highest accuracy. 
Some of the metabolites are correlated with clinical CSF biomarkers 
(Aβ42, tTau, and pTau), cognitive measures (MMSE and ADAS13), and 
Hippocampus volume. The metabolites are part of the glucose, amino 
acid, and lipid metabolisms. These findings can be used to inform early 
diagnosis, prognostic risk stratification, and/or early treatment or pre-
ventive interventions for individuals at risk for AD. In addition, the 
model provides new insights into the use of metabolomics and imaging 
in the care of people with AD. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jns.2023.120812. 
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